第五届 Xionger 网络数学竞赛试卷

(代数与数论组, 2022年9月10日至9月12日)

考试时间: 2022 年 9 月 10 日上午 9 点至 9 月 12 日晚上 21 点官方微信公众号: **Xionger** 的数学小屋

每题暂不设分值,希望诸位尽可能多地作答。试题解答请及时发送到邮箱 2609480070@qq.com,逾期将取消参赛资格.要求解答字迹清楚,排版美观,推荐采用 PDF 文档格式提交,文件命名: 代数与数论组+昵称(或姓名)+学校.

1. Let (A, \mathfrak{m}) be a local Noetherian ring (with element 1) and M be a finitely generated A- module. A free resolution of M is an exact sequence

$$\cdots \xrightarrow{\varphi_{k+2}} F_{k+1} \xrightarrow{\varphi_{k+1}} F_k \xrightarrow{\varphi_k} \cdots \xrightarrow{\varphi_2} F_1 \xrightarrow{\varphi_1} F_0 \xrightarrow{\varphi_0} M \to 0$$

with finitely generated free A- modules F_i for $i \ge 0$.

- (a) Consider $M/\mathfrak{m}M$ as a $A/\mathfrak{m}-$ vector space. Let $\{x_1,\ldots,x_n\}$ be a minimal set of generators of M. Prove that $\{\overline{x_1},\ldots,\overline{x_n}\}$ is a basis of the vector space $M/\mathfrak{m}M$, where $\overline{x_i}=x_i+\mathfrak{m}M\in M/\mathfrak{m}M$.
- (b) A free resolution as above is called minimal free resolution if $\varphi_k(F_k) \subseteq \mathfrak{m}F_{k-1}$ for $k \geq 1$. Prove that M has a minimal free resolution.
- (c) If M has two minimal free resolutions

$$\cdots \xrightarrow{\varphi_{k+2}} F_{k+1} \xrightarrow{\varphi_{k+1}} F_k \xrightarrow{\varphi_k} \cdots \xrightarrow{\varphi_2} F_1 \xrightarrow{\varphi_1} F_0 \xrightarrow{\varphi_0} M \to 0,$$

$$\cdots \xrightarrow{\psi_{k+2}} G_{k+1} \xrightarrow{\psi_{k+1}} G_k \xrightarrow{\psi_k} \cdots \xrightarrow{\psi_2} G_1 \xrightarrow{\psi_1} G_0 \xrightarrow{\psi_0} M \to 0,$$

prove that $rank(F_k) = rank(G_k)$ for $k \ge 0$.

华中科技大学, Tao 供题

2. k is a field. Let E be an algebraic extension of k, and let $\sigma: E \to E$ be an embedding of E into itself over k. Then σ is an automorphism.

华中科技大学, Tao 供题

3. k is a field. Let V be a k- vector space. W is a subspace of $V, T: V \to V$ is a injective k- linear map such that $T(W) \subseteq W$. Suppose V/W and W/T(W) are finite-dimensional k- vector spaces. Prove that as k- vector spaces, $T(V)/(W\cap T(V))$ and (W+T(V))/W have same dimension. $W/(W\cap T(V))$ and (W+T(V))/T(V) have same dimension. V/(W+T(V)) and $(W\cap T(V))/T(W)$ have same dimension. V/T(V) and V/T(W) have same dimension.

华中科技大学, Tao 供题

官方微信公众号: Xionger 的数学小屋