Exercise  Problem 1  

 

你好,这里是我的个人网站数学分析的每周一题栏目(数学分析每周一题,其中数学分析指的是数学中的分析学, 主要包括微积分,实分析,复分析)  ——————Alina Lagrange

 

Prove that : df^(ξ)dξ=2πixf(x)^

 

Proof.

Since df^(ξ)dξ=limh0Rf(x)e2πixξ1h(e2πixh1)dx as h0 |df^(ξ)dξ(2πixf(x)^)|=|Rf(x)e2πixξ[1h(e2πixh1)+2πix]dx| ε>0, Since f(x),xf(x)S(R),there exists N such that |x|N|f(x)|dx<ε and |x|N|xf(x)|dx<ε
And there exists hm>0 such that when |h|<hm , |1h(e2πixh1)+2πix|<εN Hence |df^(ξ)dξ(2πixf(x)^)|=|Rf(x)e2πixξ[1h(e2πixh1)+2πix]dx|=||x|Nf(x)e2πixξ[1h(e2πixh1)]dx +|x|Nf(x)e2πixξ2πixdx+NNf(x)e2πixξ[1h(e2πixh1)+2πix]dx||x|N|f(x)e2πixξ[1h(e2πixh1)]|dx +|x|N|f(x)e2πixξ2πix|dx+NN|f(x)e2πixξ[1h(e2πixh1)+2πix]|dx<2π(1+o(h))ε+2πε+2fε Hence finished the proof.