Exercise
⊕
Problem
1
你好,这里是我的个人网站数学分析的每周一题栏目(数学分析每周一题,其中数学分析指的是数学中的分析学, 主要包括微积分,实分析,复分析)
——————Alina Lagrange
Prove that :
d
f
^
(
ξ
)
d
ξ
=
−
2
π
i
x
f
(
x
)
^
P
r
o
o
f
.
Since
d
f
^
(
ξ
)
d
ξ
=
lim
h
→
0
∫
R
f
(
x
)
e
−
2
π
i
x
ξ
⋅
1
h
⋅
(
e
−
2
π
i
x
h
−
1
)
d
x
as
h
→
0
|
d
f
^
(
ξ
)
d
ξ
−
(
−
2
π
i
x
f
(
x
)
^
)
|
=
|
∫
R
f
(
x
)
e
−
2
π
i
x
ξ
⋅
[
1
h
⋅
(
e
−
2
π
i
x
h
−
1
)
+
2
π
i
x
]
d
x
|
∀
ε
>
0
, Since
f
(
x
)
,
x
f
(
x
)
∈
S
(
R
)
,there exists
N
such that
∫
|
x
|
≥
N
|
f
(
x
)
|
d
x
<
ε
and
∫
|
x
|
≥
N
|
x
f
(
x
)
|
d
x
<
ε
And there exists
h
m
>
0
such that when
|
h
|
<
h
m
,
|
1
h
⋅
(
e
−
2
π
i
x
h
−
1
)
+
2
π
i
x
|
<
ε
N
Hence
|
d
f
^
(
ξ
)
d
ξ
−
(
−
2
π
i
x
f
(
x
)
^
)
|
=
|
∫
R
f
(
x
)
e
−
2
π
i
x
ξ
⋅
[
1
h
⋅
(
e
−
2
π
i
x
h
−
1
)
+
2
π
i
x
]
d
x
|
=
|
∫
|
x
|
≥
N
f
(
x
)
e
−
2
π
i
x
ξ
⋅
[
1
h
⋅
(
e
−
2
π
i
x
h
−
1
)
]
d
x
+
∫
|
x
|
≥
N
f
(
x
)
e
−
2
π
i
x
ξ
⋅
2
π
i
x
d
x
+
∫
−
N
N
f
(
x
)
e
−
2
π
i
x
ξ
⋅
[
1
h
⋅
(
e
−
2
π
i
x
h
−
1
)
+
2
π
i
x
]
d
x
|
≤
∫
|
x
|
≥
N
|
f
(
x
)
e
−
2
π
i
x
ξ
⋅
[
1
h
⋅
(
e
−
2
π
i
x
h
−
1
)
]
|
d
x
+
∫
|
x
|
≥
N
|
f
(
x
)
e
−
2
π
i
x
ξ
⋅
2
π
i
x
|
d
x
+
∫
−
N
N
|
f
(
x
)
e
−
2
π
i
x
ξ
⋅
[
1
h
⋅
(
e
−
2
π
i
x
h
−
1
)
+
2
π
i
x
]
|
d
x
<
2
π
(
1
+
o
(
h
)
)
ε
+
2
π
ε
+
2
‖
f
‖
∞
ε
Hence finished the proof.
点这返回我的主页
点这返回题目目录
点这返回我的主页
点这返回题目目录